Double-stranded RNA causes airway hyperreactivity and neuronal M2 muscarinic receptor dysfunction.

نویسندگان

  • William M L Bowerfind
  • Allison D Fryer
  • David B Jacoby
چکیده

Viral infection causes dysfunction of inhibitory M2 muscarinic receptors (M2Rs) on parasympathetic nerves, leading to airway hyperreactivity. The mechanisms of M2R dysfunction are incompletely understood. Double-stranded RNA (dsRNA), a product of viral replication, promotes the expression of interferons. Interferon-gamma decreases M2R gene expression in cultured airway parasympathetic neurons. In this study, guinea pigs were treated with dsRNA (1 mg/kg ip) on 2 consecutive days. Twenty-four hours later, anesthetized guinea pigs had dysfunctional M2Rs and were hyperresponsive to electrical stimulation of the vagus nerves, in the absence of inflammation. DsRNA did not affect either cholinesterase or the function of postjunctional M3 muscarinic receptors on smooth muscle. M2Rs on the nerves supplying the heart were also dysfunctional, but M2Rs on the heart muscle itself functioned normally. Thus dsRNA causes increased bronchoconstriction and bradycardia via increased release of ACh from the vagus nerves because of loss of M2R function on parasympathetic nerves in the lungs and heart. Production of dsRNA may be a mechanism by which viruses cause dysfunction of neuronal M2Rs and airway hyperreactivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual p38/JNK Mitogen Activated Protein Kinase Inhibitors Prevent Ozone-Induced Airway Hyperreactivity in Guinea Pigs

Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinas...

متن کامل

Organophosphorus insecticides induce airway hyperreactivity by decreasing neuronal M2 muscarinic receptor function independent of acetylcholinesterase inhibition.

We previously demonstrated that the organophosphorus (OP) insecticide chlorpyrifos potentiates vagally induced bronchoconstriction independent of acetylcholinesterase (AChE) inhibition by decreasing the function of neuronal M2 muscarinic receptors that normally inhibit acetylcholine release from parasympathetic nerves supplying airway smooth muscle. However, it has been reported that different ...

متن کامل

Role of insulin in antigen-induced airway eosinophilia and neuronal M2 muscarinic receptor dysfunction.

In the lungs, neuronal M2 muscarinic receptors limit ACh release from parasympathetic nerves. In antigen-challenged animals, eosinophil proteins block these receptors, resulting in increased ACh release and vagally mediated hyperresponsiveness. In contrast, diabetic rats are hyporesponsive and have increased M2 receptor function. Because there is a low incidence of asthma among diabetic patient...

متن کامل

Macrophage TNF-α mediates parathion-induced airway hyperreactivity in guinea pigs.

Organophosphorus pesticides (OPs) are implicated in human asthma. We previously demonstrated that, at concentrations that do not inhibit acetylcholinesterase activity, the OP parathion causes airway hyperreactivity in guinea pigs as a result of functional loss of inhibitory M2 muscarinic receptors on parasympathetic nerves. Because macrophages are associated with asthma, we investigated whether...

متن کامل

Retinoic acid prevents virus-induced airway hyperreactivity and M2 receptor dysfunction via anti-inflammatory and antiviral effects.

Inhibitory M(2) muscarinic receptors on airway parasympathetic nerves normally limit acetylcholine release. Viral infections decrease M(2) receptor function, increasing vagally mediated bronchoconstriction. Since retinoic acid deficiency causes M(2) receptor dysfunction, we tested whether retinoic acid would prevent virus-induced airway hyperreactivity and prevent M(2) receptor dysfunction. Gui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 92 4  شماره 

صفحات  -

تاریخ انتشار 2002